
J .  Fluid Mech. (1995), uol. 296, p p .  211-324 
Copyright @ 1995 Cambridge University Press 

271 

A nonlocal theory for stress in bound, Brownian 
suspensions of slender, rigid fibres 

By R I C H A R D  L. SCHIEK AND E R I C  S. G. SHAQFEH 
Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA 

(Received 6 September 1994 and in revised form 3 February) 

A nonlocal theory for stress in bound suspensions of rigid, slender fibres is developed 
and used to predict the rheology of dilute, rigid polymer suspensions when confined to 
capillaries or fine porous media. Because the theory is nonlocal, we describe transport 
in a fibre suspension where the velocity and concentration fields change rapidly 
on the fibre’s characteristic length. Such rapid changes occur in a rigidly bound 
domain because suspended particles are sterically excluded from configurations near 
the boundaries. A rigorous no-flux condition resulting from the presence of solid 
boundaries around the suspension is included in our nonlocal stress theory and 
naturally gives rise to concentration gradients that scale on the length of the particle. 
Brownian motion of the rigid fibres is included within the nonlocal stress through a 
Fokker-Planck description of the fibres’ probability density function where gradients 
of this function are proportional to Brownian forces and torques exerted on the 
suspended fibres. This governing Fokker-Planck probability density equation couples 
the fluid flow and the nonlocal stress resulting in a nonlinear set of integral-differential 
equations for fluid stress, fluid velocity and fibre probability density. Using the method 
of averaged equations (Hinch 1977) and slender-body theory (Batchelor 1970), the 
system of equations is solved for a dilute suspension of rigid fibres experiencing flow 
and strong Brownian motion while confined to a gap of the same order in size as 
the fibre’s intrinsic length. The full solution of this problem, as the fluid in the 
gap undergoes either simple shear or pressure-driven flow, is solved self-consistently 
yielding average fluid velocity, shear and normal stress profiles within the gap as well 
as the probability density function for the fibres’ position and orientation. From these 
results we calculate concentration profiles, effective viscosities and slip velocities and 
compare them to experimental data. 

1. Introduction 
In many important natural and industrial processes, suspensions are confined to 

flow within domains whose size is comparable to that of the suspended particle. In 
living organisms the circulation of blood carries cells and macromolecules through 
small capillaries while separation technologies like chromatography convey suspen- 
sions through fine porous media. While passing through a fine pore, a suspended 
particle responds to a radically different environment than if it were in a bulk sus- 
pension. Flowing through a small domain, the particle can experience concentration 
gradients and fluid velocity fields that change rapidly over its intrinsic length. Addi- 
tionally, the Brownian force and torque felt by a particle can be different in magnitude 
if the particle is near a boundary or a distance on the order of the particle length 
away from the boundary. 



272 R. L. Schiek and E. S. G. Shaqfeh 

The complexity of the flow is primarily a consequence of the confining geom- 
etry. When a suspended particle is flowing within a rigid domain whose size is 
comparable to that of the particle, positions and configurations are sterically ex- 
cluded near the domain boundaries. Thus, there can be a depleted layer where 
the concentration of suspended particles drops from its bulk value to zero over 
a length comparable to the suspended particle’s size. Experimental investiga- 
tions (Muller-Mohnssen, Weiss & Tippe 1990) have verified the existence of this 
depleted layer and its effect on the bulk rheology of a suspension is well doc- 
umented, (e.g. Chauveteau 1982; Cohen & Metzner 1985; Sorbie & Huang 1991; 
Vargas, Pirez-Gonzalez & Romero-Barenque 1993). The primary finding of these ex- 
perimental studies has been that the effective viscosity of the suspension decreases as 
the domain of the flow shrinks (Chauveteau 1982; Cohen & Metzner 1985; Sorbie 
& Huang 1991; Vargas et al. 1993). Conversely one can restate this general trend 
in terms of a slip velocity between the suspension and the rigid boundary. As the 
domain for flow decreases, the slip velocity tends to increase. Physically these trends 
are observed because the depleted layer near the boundary has a lower viscosity than 
the bulk suspension. This thin, low-viscosity layer allows the more viscous core of 
the suspension to slide over the bounding surface resulting in positive slip, or a lower 
effective viscosity. 

Early theoretical work has attempted to model the depletion layer and its rheology 
by considering a Hookean dumbbell interacting with an external potential whose value 
is zero within the flow domain and infinite outside the domain. Considering simple 
shear between two infinite, parallel plates, Brunn (1976) calculated the probability 
density function for the end-to-end distance of a Hookean dumbbell assuming uniform 
simple shear and strong Brownian motion. With this probability density function, he 
calculated the extra stress created by the dumbbells and the expected first correction 
to the velocity profile. Brunn (1976) found that the velocity profile looked like simple 
shear in the centre of the channel in that it was linear and of constant shear rate. 
Within a dumbbell length of either wall the shear rate increased rapidly, making the 
velocity profile nonlinear in this region. This small region of high shear rate was 
interpreted as the slip region and a slip velocity was derived by extending the uniform 
velocity profile near the centre of the channel to the wall. As the channel width 
decreased, this slip velocity was found to increase, corresponding to a reduction of 
the effective viscosity as the separation between the plates decreased. 

By considering the first effects of a Hookean dumbbell on a simple shear velocity 
profile between two infinite parallel plates, Brunn & Grisafi (1987) improved on 
the earlier theoretical work by finding analytical solutions for stress and velocity 
within very small and very large gaps. The same general trends were found as 
before in that the effective viscosity decreased as the channel width was reduced. 
Additionally, normal stresses were calculated and found to decrease from their bulk 
value monotonically to zero at the wall over a length comparable to the radius of 
gyration of the suspended dumbbell. Later, with the same model system, Aubert & 
Tirrell (1982) solved the problem self-consistently for the fluid velocity and effective 
viscosity, finding the same general trends. 

Working with the model system of a Hookean dumbbell under simple shear between 
two infinite, parallel plates, Mavrantzas & Beris (1992) modelled the rheology of this 
system by constructing a Hamiltonian and then minimizing the Helmholtz free en- 
ergy. Supporting the earlier findings (Aubert & Tirrell 1982; Brunn & Grisafi 1987) 
they found first normal stress differences that monotonically decreased from their 
bulk values in the centre of the gap to zero at the walls, and slip velocities in- 
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creased as the channel width decreased. Additionally, they found a monotonically 
decreasing dumbbell concentration over the distance of one dumbbell length near the 
walls. While their results confirm earlier findings (Aubert & Tirrell 1982; Brunn 1976; 
Brunn & Grisafi 1987), the methodology used is amenable to more complex geome- 
tries and implies that these broad trends apply there as well. 

The model problem considered in this work is a suspension of slender rigid fi- 
bres experiencing either shear or pressure-driven flow and strong Brownian motion 
while they are confined between two infinite, parallel plates. In 92 using slender body 
theory (Batchelor 1970), averaged equations (Hinch 1977) and nonlocal transport the- 
ory (Shaqfeh 1988), the ensemble-average extra stress due to the fibres is constructed 
in terms of an integral average of the velocity gradient and the probability density 
function describing the fibre positions and orientations. This extra stress formulation 
inherently allows for velocity fields and concentration gradients that change on the 
length of a fibre. In addition we allow for a general torque (such as a Brownian 
torque) to be exerted on the fibre. Thus, this extra stress captures the physics of 
the environment felt by a fibre in or near a depletion layer where the velocity and 
concentration are changing rapidly. When the environment around the fibre is con- 
stant in concentration and velocity gradient, the nonlocal extra stress reduces to 
a classical, volume-averaged extra stress and we recover the theoretical results for 
unbound, homogeneous suspensions of rigid fibres (Brenner 1974; Giesekus 1962; 
Hinch & Leal 1972). 

To complete the description of the extra stress, the governing Fokker-Plank equa- 
tion for the probability density function describing the fibre positions and orientations 
is derived in 93. Since the probability density function depends on the fibre’s centre- 
of-mass translational and its rotational velocity which both depend on integrals of 
the fluid velocity, this governing equation is coupled to the fluid motion. Because this 
governing probability density equation describes an unbound fluid domain additional 
boundary conditions are required for the bound model system considered here. Using 
rigorous no-flux boundary conditions developed elsewhere (Nitsche & Brenner 1990; 
Nitsche 1991), the probability density function is completely specified. This is accom- 
plished without the addition of an external potential to model the steric hindrance of 
the walls. 

The governing momentum equations for the suspension are derived in $4 and 
incorporated into the model because both the nonlocal, average extra stress and 
probability density function depend on the average fluid velocity field. This leaves 
the solution of a coupled set of nonlinear, integral-differential equations to find the 
average velocity, stress and the fibre’s probability density function. In 95 the methods 
used to solve this system of equations are discussed. First the model problem is 
solved for simple shear flow and these results are presented in $6. Additionally, simple 
theories which are asymptotically correct for zero concentration and small gap width 
are developed in 96 and compared to the full, nonlocal theory. Results for pressure- 
driven flow are given in 97 along with small concentration and small gap asymptotic 
theories. Detailed comparisons are made between our theoretical predictions and 
previous experimental results in 98. Finally, concluding remarks and questions for 
further study are discussed in 99. 

2. Derivation of the nonlocal stress 
To describe the rigid fibres considered in this work, the notation shown in figure l(a) 

will be used. Each fibre has a length of 26 and a diameter of 2b. The fibre’s aspect 
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FIGURE 1. (a) Notation used to describe a fibre. (b)  Force balance on a fibre. 

ratio ( / / b )  is assumed to be large such that its inverse is small, E = b / /  << 1. A 
fibre’s centre-of-mass location is denoted in index notation by the Cartesian vector 
xci. Similarly, a fibre’s orientation is given by the Cartesian unit vector pi which is 
parallel to the fibre’s major axis. When xi is defined as xi = xci + s pi as shown 
graphically in figure l(a), the scalar s locates points along the fibre’s central axis 
for all s in the range -8 to +/. At any axial position s, the function r (s) denotes 
the fibre’s cross-sectional perimeter. For a fibre with centre-of-mass position x, and 
orientation p ,  D ( x , , p )  is the set of all points that lie within the fibre. Finally, the 
number density of fibres in the suspension is n. 

Considering a suspension of rigid fibres in a Newtonian solvent, the total stress 
at a point within a given realization of the suspension can be determined from the 
definition of stress for a Newtonian solution plus the extra stress caused by the 
presence of the fibres as 

aij = -9 6 ,  + 2p eij + a;, (2.1) 
where 9 is the fluid pressure, aij is the isotropic unit tensor, p is the Newtonian 
solvent viscosity, e i j  is the rate of strain tensor and o;, is the extra stress due to the 
presence of the fibres in the suspension. Because rigid fibres do not, in general, obey 
a Newtonian stress relation, aij is defined as a generalized function which is zero 
whenever the point of interest lies outside a fibre and is finite within a fibre. With 
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this definition of the extra stress, the expression for the total stress is exact for any 
single configuration of fibres in the suspension. 

Within a fibre suspension, a specific fibre configuration has a frequency, or probabil- 
ity of occurrence. Given a complete fibre suspension configuration, an instantaneous 
extra stress and bulk stress can be calculated. To obtain an average behaviour for 
the system, one of two approaches can be followed. Average behaviour can be 
determined by following one configuration of fibres over a long period of time and 
averaging over this sampling time; such would be an ergodic approach. Another 
approach is to consider all possible configurations of fibres in the suspension along 
with each configurations’ probability of occurring. The average stress, or extra stress 
in this framework is the sum of all the products of the instantaneous stress due to 
a configuration and the probability of occurrence of that specific configuration. This 
latter method is know as ensemble averaging. 

To obtain more general results, equation (2.1) is averaged over all allowed configura- 
tions, or ensembles, of fibres within the suspension. Ensemble averaging equation (2.1) 
as defined by McQuarrie (1976) and using (.) brackets to denote ensemble averaged 
quantities yields 

For the Newtonian components of the stress, the ensemble averages are easily com- 
pleted because the medium is unaffected by the configuration of the fibres. However, 
the extra stress term depends strongly on fibre configuration. Applying the definition 
of an ensemble average and noting that the extra stress is zero outside a fibre, the 
ensemble averaged extra stress is 

(oij) = - (9) d i j  + 2~ (eij) + ( o l ) .  (2.2) 

r r 

A similar expression was derived by Shaqfeh (1988) for the nonlocal, extra heat flux 
in a composite of highly conducting slender fibres. The similarity to Shaqfeh’s work 
results from considering the fibres in nonlocal environments where the driving forces 
behind transport change on the same length scale as the size of a suspended particle, 
and in the use of conditionally averaged quantities as defined by Hinch (1977). 

Since the average extra stress in equation (2.3), (oij)(x),  can only depend on 
ensembles containing fibres that intersect the point of interest, x, the domains of 
integration select a subset of configurations from all possible configurations of fibres 
in the suspension. Each member of this subset of ensembles contains a fibre that 
intersects the point of interest. For the first integral, the integration domain D is the 
set of all allowed orientations p .  The second integral’s domain, x E D(xc,p), is the 
set of centre-of-mass locations, x,, such that the point of interest, x, lies within the 
domain of a fibre whose centre of mass is at x, and has an orientation p .  

While the domains of integration in the formal definition of the extra stress 
select all ensembles that affect the point of interest x, the integrals in equation (2.3) 
simply average the extra stress for a given fibre configuration. The averaging arises 
because the kernel weighs the stress for a given configuration, (ok ( ~ \ x , , p ) ) ~ ,  with 
the probability for having that configuration, P (x,,p), where terms enclosed by 
are first conditionally averaged quantities as defined by Hinch (1977). Physically 
(oij (xlx,,p)) , represents the extra stress at the point x given that there is a fibre 
with centre-otl-mass position x, and orientation p ,  averaged over all possible positions 
and orientations of other fibres in the suspension. The final factor in equation (2.3), 
P (x,,p), is a probability density function for fibre configuration in the suspension. The 
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normalization condition for this probability density function is fixed by conserving 
the fibre mass within the suspension. The integral of probability density over the 
complete fibre configuration space (all allowed xc and p )  equals the number of fibres 
in the suspension since all the suspended fibres lie within the configuration space. 
Specifically, the normalization condition is 

where N is the total number of fibres in the domain I/ of the suspension, and it can 
be seen that the probability density function has the dimensions of number per unit 
volume. 

Within a slender rigid fibre, gradients of the extra stress are much larger along the 
fibre’s length than perpendicular to it. For a fibre aligned parallel to the x1 axis, this 
implies 

The kernel of equation (2.3) will not change appreciably as the centre-of-mass PO- 

sition X, is displaced by a fibre radius b perpendicular to the fibre’s central axis 
provided the probability density function is constant over these same centre-of-mass 
displacements. As the aspect ratio increases (making b / /  << l), an O(b) translation of 
x, perpendicular to p negligibly changes the centre-of-mass. Thus x, = x - sp where 
s E [-/,+/I defines all centre of mass positions for a given orientation of fibres that 
intersect the point of interest to within an O(b) distance. Integrating equation (2.3) 
over all centre-of-mass displacements of O(b)  perpendicular to p is equivalent to 
integrating over a fibre cross-section and results in 

where (Ti,) is the conditionally averaged extra stress integrated over a cross-section 
of a fibre and has dimensions of force per unit length. 

To determine (Tij) ,  we seek a connection between this conditionally averaged 
quantity and a physical force per unit length experienced by a fibre. Considering a 
force balance on a section of a force-free rod as shown in figure l(b) and neglecting 
the ends of the rod, one finds 

where a; is the stress inside the rod, pi  is the rod’s orientation vector which is 
perpendicular to the cross-section of the rod, a; is the fluid stress at the rod’s surface 
and n, is the local normal outward to the rod’s surface. Equation (2.7) states that the 
force transmitted through the cross-section of a rod (area Al) must be balanced by 
the force exerted on the surface of the rod (area A2), cf. figure l(b). The orientation 
of the fibre, p j ,  does not depend on the surface domain A1 so the first integral can be 
completed as 

where Tij is the extra stress integrated over a cross-section but not yet conditionally 
averaged. For a given position along the fibre’s primary axis, the second integral in 
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equation (2.7) can be written as an integral of the fluid stress around the perimeter of 
the fibre integrated up to the location of the cross-section. Thus, the second integral 
in equation (2.7) becomes 

rs 

(2.10) 

where in moving from equation (2.9) to (2.10) one simply notices that the line integral 
about the perimeter in equation (2.9) is equivalent to the force per unit length, fi, 
exerted by the fluid on the fibre. 

Combining equations (2.7), (2.8) and (2.10) we can relate the extra stress integrated 
over a fibre cross-section to the force per unit length exerted by the fluid on a fibre: 

(2.11) 

The deviatoric extra stress can be calculated by subtracting a third of the trace as 
$3ij8Lk. The derivation will be conducted with the non-deviatoric stress since the 
conversion to the deviatoric stress can be done at any point in the analysis and would 
necessitate carrying around extra, complicating terms. 

This basic form for the extra stress was encountered earlier (Kirkwood & Riseman 
1948; Riseman & Kirkwood 1950). In attempting to predict intrinsic viscosities 
for suspensions of flexible and rigid polymers, they derived an extra shear stress 
proportional to integrals of the force density on a polymer chain. Equation (2.11) is 
equivalent to that found in their formalism when evaluated over an entire rod length 
(s = +/). Specifically, the quantity Tij (+dlxc,p) is identical in structure to Kirkwood 
& Riseman’s assertion that the primary source of extra stress is the force transmitted 
parallel to the fibre axis. On physical grounds, it can be argued that force transmitted 
along a rigid fibre’s primary axis will always be O ( / / b )  greater than force transmitted 
perpendicular to the primary axis since the force conduction length along the main 
axis is always O ( / / b )  greater than lengths perpendicular to the main axis. For the 
large aspect ratio particles considered here, forces transmitted parallel to the fibre 
axis will be the dominant contributors to the extra stress. 

Additional support for using an extra stress proportional to -fi pi as in equa- 
tion (2.11) can be found in the work of Shaqfeh & Fredrickson (1990). In that work 
the authors described transport in unbound suspensions of rigid rods by deriving an 
ensemble-averaged Green’s function for the transport of momentum via a diagram- 
matic representation of multiple scattering events within the suspension. The Fourier 
space Green’s function derived in their work implicitly contains information on the 
structure and scaling of the extra stress. Using the form of the extra stress in equa- 
tion (2.11) and transforming to the governing equations of Shaqfeh & Fredrickson, 
one can derive a Green’s function of the same structure as Shaqfeh & Fredrickson’s. 
If the full extra stress derived at the end of this section is Fourier transformed, and 
substituted into their governing equations, their Green’s function is exactly recovered. 
It is important to note that two completely different lines of reasoning arrive at 
the same results for unbound suspensions. While Shaqfeh & Fredrickson employed 
multiple scattering expansions to derive an ensemble-average Green’s function, we 
recover their results using nonlocal theory and the method of averaged equations for 
an unbound non-Brownian suspension of rigid fibres. 
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The extra stress at a fibre's cross-sectional position s is related to a general force per 
unit length experienced by the fibre as shown in equation (2.11). More importantly, this 
expression for the extra stress at a cross-section depends parametrically on the fibre's 
centre-of-mass position x, and orientation p .  For a dilute suspension where isolated 
particles do not interact, the leading-order solution for a first conditionally averaged 
field is equivalent to the disturbance field generated by a single particle (Hinch 1977; 
Shaqfeh 1988). Thus, in the dilute limit where n13 << 1, iY{j in equation (2.11) is 
equivalent to the first conditionally averaged extra stress integrated over a cross- 
section, cf. equation (2.6). Combining equations (2.6) and (2.11), one obtains the 
ensemble-average extra stress for a dilute suspension of fibres in terms of the force 
per unit length exerted by the fluid on a fibre in a given configuration weighted by 
the probability of having a fibre in that configuration: 

To relate the force per unit length in equation (2.12) to hydrodynamic forces 
and general body torques we use slender-body theory (Batchelor 1970; Shaqfeh & 
Fredrickson 1990). The primary result of this theory states that, when evaluated at the 
fibre surface, the disturbance velocity, ui, can be represented by an integral equation 
for the Stokeslet force density, fi(s), along the fibre's major axis as (Batchelor 1970), 

u! = u" - ui - spi 
1 1  

(2.13) 

where r (s) is a dimensionless cross-sectional shape function defined by Batche- 
lor (1970), while Ui and pi are respectively the translational and rotational velocities 
of the fibre. We first consider fibres which are force free but may be under an 
applied torque denoted by Ni. Thus, the Stokeslet force density is constrained by the 
following force and torque conditions respectively: 

(2.14) 

f i j k p k  sfj (s) ds = J i ,  (2.15) 

where f i j k  is the alternating unit tensor. By expanding fi, Ui and p i  in the small 
parameter In (2/e)-l as 

1: 
f i  = In (2/.5-l j jo) + In (2/.5) -2 fi (1) + . . . , 
ui = u?) + In (2/.5)-l ~ j ' )  + * * * , 

pi = pf') + In ( 2 / ~ )  
-1 .(1) 

and substituting into equations (2.13), (2.14) and (2.15), the following leading-order 

pi + . . . , 
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solutions for force density, f?', centre-of-mass translational velocity, U?), and centre- 
of-mass rotational velocity, @') are found: 

(2.16) 

(2.17) 

Substituting equations (2.16), (2.17) and (2.18) into equation (2.12), changing the 
order of integration several times and carrying out a number of algebraic simpli- 
fications, one can derive the following expression for the ensemble-averaged extra 
stress : 

(2.19) 

In equation (2.19), Wl (5) and W2 (5) are weighting functions defined as 

(2.20) 

and 

e-r (e + S) (-e + g + S )  (-e2 - 3s2 + 3eg - 3 ~ 5 )  

e (e - s)(e + g + s) (e2 + 3s2 + 3et + 3 4  
4e3 

p (x - SP, P) ds 4e3 
for 5 2 0, 

W 2 ( g )  = 

p (x - SP, P) ds 

for 5 d 0. 
1 e - t  I (2.21) 

In the expression for the nonlocal extra stress, equation (2.19), the first two integral 
terms relate hydrodynamic forces to the total extra stress while the third term 
represents the contribution of a general body torque, Nn, to the extra stress. The first 
integral term arises because a rigid fibre cannot stretch like a fluid line element. As the 
velocity gradient increases along the length of the fibre, the kernel pi p j  pk pi duk/dxI 
grows, increasing its contribution to the extra stress. When the velocity gradients 
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and probability density function scale on lengths larger than the particle size, this 
first integral simplifies to become the classical bulk stress for an unbound, dilute 
suspension of slender, non-Brownian fibres derived by Batchelor (1971), and shown 
later in equation (2.27). 

The second integral term in equation (2.19) arises from nonlocal rotational motions 
of fibres in the suspension. When the velocity field changes on lengths comparable 
to or smaller than a fibre’s intrinsic length, the fibre cannot rotate with the fluid. 
Because of its rigidity, the fibre will rotate with an average value of the fluid velocity 
component perpendicular to its central axis. The kernel ( d i k  - p i  p k )  p i  P I  duk/ax~ 
selects gradients of the velocity field which are perpendicular to the fibre axis. When 
the velocity gradients and probability density function scale on lengths larger than 
the particle size, this term’s contribution to the extra stress diminishes becoming 
zero as the velocity gradient and probability density of fibre configuration become 
uniform. 

Both of the hydrodynamic terms in the extra stress definition, equation (2.19), 
contain weighting functions in their kernels defined by equations (2.20) and (2.21). 
The argument of the weighing functions, 5 ,  is a scalar distance in the direction of p 
from the point of interest x where the fluid velocity gradient is sampled, i.e. duk/dx, 
evaluated at x + t p .  Thus as 4 varies from -28 to +2t, the weighting functions control 
the degree to which the velocity gradient at x + < p  contributes to the extra stress. 

Since both weighting functions Wl ( 5 )  and W2 ( 5 )  depend parametrically on the 
vectors x and p through the probability density function P (x - s p , p ) ,  their shape 
and its importance are difficult to visualize. To better understand the weighting 
functions, we will temporarily assume that the suspension of fibres considered here is 
spatially homogeneous. If the suspension is spatially homogeneous, that is the fibres’ 
centre-of-mass positions are random, then the probability density function, P ( x , , p ) ,  
is independent of position and reduces to an orientation distribution function, @ (p). 
Replacing P ( x c , p )  with @ (p) in equations (2.20) and (2.21) and factoring @ (p) out 
of the weight function definition and into the extra stress expression, equation (2.19), 
one can analytically complete the integrals for the weighting functions. Under the 
condition of spatial homogeneity, the weighting functions become 

and 

(2.22) 

(2.23) 

Plotted in figures 2(a) and 2(b) as solid lines are the weighting functions of 
equations (2.22) and (2.23) respectively with fibre length, 8, set to unity. Exami- 
nation of the graphs shows that both weighting functions Wl(5)  and W2 ( 5 )  give 
strongest weight to the point of interest where 5 = 0. Moving away from the point 
of interest, W,  ( 5 )  monotonically decreases, reaching zero identically at 5 = f2. 
The weighting function W2(5) decreases rapidly away from 5 = 0, becoming neg- 
ative before it identically reaches zero at 5 = +_2. Using the probability density 
function for a fibre in shear flow near a wall (calculated later in this paper) the 
form of the weighting functions can be examined for a particular position and 
orientation with a spatially dependent probability density function. Plotted in fig- 
ures 2(a) and 2(b) as dashed lines are the weighting functions for a suspension with 
an inhomogeneous probability density function. While similar in structure to the 
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FIGURE 2. Weighting functions Wl ({), in (a), and W2 (0, in (b ) ,  plotted as a function of dimensionless 
distance along a fibre’s major axis, 5 ,  where lengths have been made dimensionless with the fibre 
half-length d. 

spatially homogeneous weighting functions, the weighting functions for a spatially 
inhomogeneous suspension lack symmetry. Although still strongest at the point of 
interest, the nonlocal weighting functions are not necessarily symmetric about that 
point. 

The third and final term in the extra stress expression, equation (2.19), re- 
lates a torque Jlrn on the suspended fibres to the extra stress. Inclusion of an 
external torque in the extra stress parallels inclusion of external torques in the 
governing equations for ferrofluids, suspensions in which an external magnetic 
field applies a torque to suspended particles (Rub;, Perez-Madrid & Salueiia 1990; 
Salueiia, PCrez-Madrid & Rub; 1990). As with the hydrodynamic forces, the body 
torque included in the extra stress of equation (2.19) can vary on the length of the 
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suspended particle because it is treated nonlocally. To include Brownian torques 
within this extra stress, the applied torque is related to the fibres’ probability density 
function as demonstrated by Doi & Edwards (1989). First a potential is formed from 
the probability density function as 

where k B  

torque is 
Edwards 

(2.24) 

is Boltzmann’s constant and T is the absolute temperature. The Brownian 
proportional to a gradient of this potential in orientation space (Doi & 
1989) : 

(2.25) 

In order to test the nonlocal extra stress derived in equation (2.19) comparisons 
can be made to existing theories for the extra stress in unbound suspensions of rigid 
particles. Earlier works (Hinch & Leal 1972, 1975, 1976) assumed a constant velocity 
gradient within the suspension and a homogeneous particle distribution. Considering 
the fibres to be distributed randomly with respect to their centre of masses and 
assuming that the suspension is not bounded, the probability density function which 
has units of number density becomes a constant number density multiplying an 
orientation distribution function. Specifically, 

lim P ( z ,  0,4)  + n@ (0,4) (2.26) 

where @ (0,4) is the fibres’ orientation distribution function. Applying the assump- 
tions of constant velocity gradient, random fibre centre-of-mass placement and no 
suspension boundaries to the extra stress defined by equation (2.19) while neglecting 
Brownian motion, one can analytically derive the deviatoric extra stress, 

(2.27) 

where the brackets, (.), denote averages over the fibres’ orientation distribution 
function. This form of the extra stress agrees with earlier work by Batchelor (1970) 
and exactly reproduces the results of Hinch & Leal (1972, 1975, 1976). 

Assuming that the fibres’ orientation distribution function arises from a consid- 
eration of Brownian motion within the suspension, the distribution function can 
be used to calculate Brownian stresses. Using equation (2.26) to relate the ori- 
entation distribution function to the probability density, the Brownian torques on 
the suspended fibres can be calculated by substituting equation (2.26) in equa- 
tions (2.25) and (2.24). Substituting this Brownian torque into the body torque 
term of the extra stress, the last term in equation (2.19), and simplifying using 
Green’s theorem for a closed spherical surface (Berry & Russel 1987), one can de- 
rive the Brownian contribution to the extra stress for an unbound suspension of 
fibres. The Brownian contribution to the extra stress that we derive in this manner, 
viz. 

oij = nkB T ( 3  (pi p j )  - Sij) , (2.28) 
is identical to the result of Hinch & Leal (1972, 1975, 1976) for an unbound sus- 
pension of non-spherical particles. Thus, the nonlocal extra stress recovers the 
local extra stress relationships when the nonlocal elements of the problem are re- 
moved. 

Finally, equations (2.19), (2.20), (2.21), (2.24) and (2.25) complete the description of 
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the nonlocal average extra stress. However this system of equations leaves the extra 
stress in terms of a probability density function and a velocity field. To continue the 
development we derive the governing equations for the probability density function 
in the next section. 

3. The governing probability density equation 
Assuming that the suspended fibres collide with solvent molecules frequently 

enough such that the collisions produce a random, fluctuating force on the fi- 
bres, and that this force is independent of fibre motion, a Fokker-Planck governing 
equation applies to the fibres’ probability density function; (i.e. Chandrasekhar 1943 ; 
Doi & Edwards 1989; McQuarrie 1976). Because the rigid fibres are elongated and 
freely suspended, they can translate and rotate about their centre of mass. The govern- 
ing Fokker-Planck equation for particles free to translate and rotate is (Brenner 1974; 
Chandrasekhar 1943; McQuarrie 1976) 

aP aj; aj,P 
- + - + - = 0, 
at  axi api 

where d/dxi and a/api are gradients in translational and orientational space respec- 
tively. Accordingly, the terms j; and jf are fluxes of probability in translational and 
rotational space. Equation (3.1) represents a simple conservation law wherein any 
change in the probability density must be balanced by the divergence of the fluxes in 
translational and rotational space. These probability fluxes are defined as 

where Ui is the translational velocity and pi the rotational velocity of a fibre 
with respect to its centre of mass. The translational and rotational diffusion ten- 
sors are represented by Dij and dij respectively. Coupling between a fibre’s rota- 
tional and translational motion is ignored because the slender fibres we consider 
lack the geometric features to couple these processes (Brenner 1974; Nitsche 1991; 
Nitsche & Brenner 1990), i.e. they have no twist or curvature. 

To simplify the governing probability equations we consider the coordinate ge- 
ometry pictured in figure 3. Thus, confining the suspension of fibres between two 
infinite parallel plates where the coordinate system is chosen to lie on the lower plate 
with the x3 axis pointing towards the upper plate, fluid flow is unidirectional in the 
x2 direction making x1 the vorticity axis while implying that P is independent of 
x2. By moving the upper plate while holding the lower plate fixed, shear flow is 
imposed, while fixing both plates and applying a pressure gradient in the x2 direction 
creates plane Poiseuille flow. The gap width h is made dimensionless with the fibre 
half-length, t and denoted as A. In this geometry, a fibre’s centre-of-mass distance 
from the lower wall is z (where z has been made dimensionless with t as z = x3/L‘). 

Two rotation angles, 8 and 4, determine a fibre’s orientation where 8 is the angle 
the fibre’s major axis makes with the normal to the lower wall and 4 is the angle 
that the projection of the fibre’s major axis onto the (xl, x2)-plane makes with the 
x1 axis. Defined as such, 6’ and q5 are identical to angular ordinates in a spherical 
coordinate system (Marion & Thornton 1988). Complete specification of a fibre’s 
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FIGURE 3. Problem geometry and notation. 

configuration is therefore given by its centre-of-mass position and two orientation 
angles. 

Translational and rotational diffusion tensors for a slender fibre in an unbound 
suspension are defined as 

where Dil is the translational diffusivity for a rod moving parallel to its major axis, 
DI  is the translational diffusivity for a rod moving perpendicular to its major axis 
and D, is the rotary diffusivity for a rod rotating about its centre of mass. Changes in 
a fibre’s mobility and thus its diffusion tensors due to interactions with surrounding 
boundaries or other fibres are ignored in our derivation to simplify the govern- 
ing equations. There is evidence, moreover, that neglecting a fibre’s hydrodynamic 
mobility change as it approaches a wall is a very reasonable approximation. Experi- 
mental work of Russel et al. (1977) found that the sedimentation velocity of a fibre 
falling near a wall is unaffected by the wall provided that the fibre-wall separation is 
greater than one fibre half-length. When the fibre-wall separation is less than a fibre 
half-length, translational motion perpendicular to the wall is weakly affected while 
translational motion parallel to the wall remains unaffected within their experimental 
error (Russel et al. 1977). Additionally, one can consider changes in a fibre’s hydro- 
dynamic mobility due to the presence of other fibres in the suspension. As reported 
by Doi & Edwards (1989), a fibre’s rotational diffusivity is approximately constant 
for n t 3  < 4. While changes in a fibre’s mobility are neglected, the fluid boundaries 
rigorously impose a zero particle flux condition which will be presented later in this 
section. Neglecting changes in a fibre’s mobility in no way implies that at the fluid 
boundaries the no flux condition is ignored. Rather, assuming constant mobilities is 
a simplification that is well justified for dilute suspensions. 
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Combining equations (3.1)-( 3.5) and simplifying yields 

285 

a2p 1 a 1 a2p 
~c~ [ 1 - p sin2 01 ~ + 

az2 sin0 80 
i a  

[sin 8cos 0 sin 4 g (z,O)P] + -- [cos 4 g (z, 8) PI} (3.6) 
=Pe{-- i a  

sin 0 80 sin 0 84 

with the following definitions: 

for slender fibres, 2 Dll - 2 Ic =- - -  
t2D, 3 

for slender fibres. (3.10) 
p = l - r = -  D 1  

DII 2 

In the above equations all lengths have been made dimensionless with the fibre 
half-length t. Velocity has been made dimensionless with 98 in equation (3.13) where 
9 is the bulk applied shear rate for simple shear flows or the shear rate at the wall 
for pressure-driven flows. The scalar ratios ic2 and p of the diffusion coefficients 
are constant for slender bodies (Batchelor 1970). This non-dimensionalization of the 
governing probability equations is consistent with earlier work by Nitsche (1991). 

Equation (3.6) represents a balance between diffusive and convective flux of the 
probability density function, a balance which is controlled by the value of the rotary 
Peclet number, Pe, defined here as the ratio of the bulk shear rate 9 to the rotary 
diffusivity Dr. Under the condition of strong Brownian motion, or weak flow, diffusive 
motion will dominate and P e  << 1. We shall be concerned with this asymptotic 
limit since in this parameter regime significant Brownian stresses can develop, and 
moreover, Brownian forces tend to orient particles away from the flow direction 
thus creating large hydrodynamic stresses. It follows that the largest stresses in fibre 
suspensions are found for flows near equilibrium. It is these large extra stresses and 
their variation under nonlocal conditions that we shall primarily investigate. 

As a second-order partial differential equation in z, 0 and 4, the governing equation 
for the probability density function, equation (3.6), requires six boundary conditions 
for solution. Four boundary conditions arise from the zero particle flux constraint 
applied at the walls. For spherical particles the no-flux constraint implies that at 
a boundary the translational flux j f  normal to that boundary is zero. A similar 
condition applies to the probability density function P(z, 0, 4)  but now the surface on 
which the normal component of the flux vanishes is more complicated. In the set of all 
phase-space points 'for this system ( z ,8 ,4 ) ,  there is a subset of allowed configurations 
and its complement, a set of forbidden configurations. For a bound suspension of 
fibres, forbidden configurations correspond to positions and orientations that place 
any fibre within the walls. Separating these sets is a hypersurface, and the local 
normal to this surface when dotted into the rotational and translational probability 
flux must be zero. Explicitly this implies 

(3.11) 
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FIGURE 4. Geometric constraints on a fibre near a boundary. 

where n; is the local normal to the hypersurface separating allowed and forbidden 
configurations. Simplifying equation (3.11) for the geometry used in figure 3 yields 

- J C ~  [I -psin2e] - +sine PecosQsin$g(z,o,$) P - - = O  
a p  a Z  - ( aP ae ) 

on z = f cos 8 (3.12) 

for the lower boundary at z = 0, and the following for the upper boundary at z = A: 

-K* [1-psin2e] -+sine Pecosesin$g(z,8,$) P--  = O  
a p -  aZ ( a p  ae ) 

on z = A T c o d .  (3.13) 

In equations (3.12) and (3.13) the upper sign is used when 0 < 8 < n/2 and the 
lower sign is used when n/2 < 8 < n. This form for the no-flux boundary condition 
is consistent with the earlier works (Nitsche & Brenner 1990; Nitsche 1991). 

The no-flux constraints embodied in equations 3.12 and 3.13 state that for a fibre in 
contact with a wall, translational and rotational motions must be coupled to prevent 
the fibre from rotating or translating through that wall. As shown graphically in 
figure 4, for a fibre in contact with the wall a negative flux in the z-direction (motion 
of the centre of mass towards the wall) must be coupled by positive flux in the 8- 
direction (rotation keeping the end of fibre from penetrating the wall). In moving 
from 8 = 0 to f3 = n/6, a positive 8 flux, the fibre in figure 4 moves its centre of mass 
closer to the wall undergoing a negative z flux. This coupling of translational and 
rotational motion explains the necessity of the coupled no-flux condition and the sign 
requirements balancing each term in equations (3.12) and (3.13). 

Together the no-flux constraints on the upper and lower walls place four boundary 
conditions on the probability density function, one constraint on z and one on 8 for 
each equation. Rotation of a fibre in the $-direction cannot move the fibre through 
a wall, cf. figure 3. Thus, it is consistent that the no-flux conditions must hold for 
all $ and not place any restrictions on a fibre’s orientation in that angle. Since the 
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probability density function must be finite and continuous for all allowed z, 8 and 4, 
it must be periodic in 4. This periodicity condition implies 

P (z, e, 4 + 2 4  = P (z, e, 4 ) .  (3.14) 

Physically, since the geometry of our system as shown in figure 3 is symmetric with 
respect to the flow-velocity gradient plane (the x2, x3 plane), the probability density 
function or distribution of fibres within the suspension must by symmetric about this 
plane as well. To produce this symmetry, the probability density function must be 
periodic in 4. 

In addition to the no-flux and periodicity requirements, a final boundary condition 
must be placed on the probability density function to ensure that it is mathematically 
unique. The final constraint is normalization such that upon integration over all 
allowed configurations in some volume V of the suspension, the probability density 
must equal the number of fibres within that volume. This normalization requires 

ldVl::dBp’d+P(z,Q,$) s ine= N (3.15) 

where N is the total number of fibres within the volume V and the functions 81 (z) 
and e2(z) refer to the minimum and maximum allowed angles in the 0-direction for 
a given z-position. For the geometry shown in figure 3, 01 and 82 are defined as 

for z > 1 and z < (A - 1)  
el = arccos(z) for z < 1, (3.16) (“ arccos (A - z) for z 2 (A - l), 

and 
for z 2 1 and z < (A - 1)  
for z < 1. (3.17) 
for z 2 (A - 1). arccos (-A + z )  

Since the system we consider is invariant to translation in the XI-  and x2-directions 
the volume integral in the normalization condition, equation (3.15), can be completed 
over a cross-section in the (xl, x2) plane. Denoting the area of this cross-section as 
A12, the normalization constraint becomes 

J dxl J dx2 J dx3 Je2(x3) de p’ d 4  P (x3, e, 4)  sin e (3.18) 

(3.19) 

In moving from equation (3.18) to equation (3.19) the differential element dx3 has 
been made dimensionless with fibre half-length e as dx3 = edz and the integration 
domain in the z-direction has been set to the entire gap width. This moves the volume 
dimensionality to the quantity A& such that when transferred to the right-hand 
side of equation (3.19) the normalization condition becomes 

el(x3) 

el(z) 

= A12e 1 dz SB;“) de p’ d 4  p (z, e, 4)  sin e = N .  

(3.20) 

Since the domain of integration in the z-direction is the entire gap from z = 0 to A, 
the number density n in equation (3.20) corresponds to the number density of fibres 
within the confined suspension. 
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At this point it is useful to consider the physical implications involved in nor- 
malizing the probability density function through equation (3.20). Conceptually, the 
normalization represented in equation (3.20) implies that the sum of the probability 
density over all configuration states must equal the number density times A. In an 
unbound suspension, the meaning of the number density is unique and simple; n 
is the number of fibres per unit volume of the suspension. However, in a bound 
suspension the meaning of the number density is more complicated, and can be 
defined in two distinct ways. The simplest way to understand the two different 
interpretations of the number density is through consideration of two experiments. 
In the first experiment, a fluid of volume V containing N fibres is placed between 
two infinite, parallel plates separated by a distance A. If the fibres were allowed to 
freely rotate near the boundaries, but could not pass their centre-of-mass through 
these boundaries, then the number density of fibres in the confined suspension would 
simply be n = N / V .  However, fibres cannot freely rotate through a solid boundary, 
and near a solid boundary there is a reduced set of centre of mass positions, z ,  and 
orientations, 8, available to the fibres as expressed in equations (3.16) and (3.17). 
Since the N fibres in the confined suspension are constricted to a reduced set of 
centre-of-mass positions and orientations, they are restricted to a fractionally smaller 
volume than the volume available to the supporting fluid. Therefore, the number 
density of fibres, n, in the volume available to the confined suspension is greater than 
N / V .  The degree to which the fibre number density is greater than N / V  can be 
determined by satisfying the normalization condition, equation (3.20), in the absence 
of flow. 

Under quiescent, equilibrium conditions, the probability density is uniform and 
constant within all allowed conjigurations. Thus in the absence of flow, the probability 
density function has the form 

(3.21) 

where M (A) is a normalization constant that will depend on total gap width, A. Substi- 
tuting this probability density into the normalization constraint, equation (3.20), and 
conducting the integration while observing the restriction in allowed fibre orientations, 
equations (3.16) and (3.17) determine the normalization constant as 

for A d 2 

for A >  2. 
4.n (A - 1) 

(3.22) 

Physically the normalization scaling of l / A  and A / ( A  - 1) results from a steric 
depletion of allowed fibre configurations near the boundaries. In a gap of width 
A and cross-sectional area A, a volume smaller than AA is available to the fibres. 
This reduction in available volume causes the local concentration of fibres to be 
fractionally larger for a bound suspension compared to an unbound suspension. 
If a fluid with number density n fibres per unit volume is placed between two 
parallel plates infinitely far apart, then the local concentration of fibres remains n. 
However, as the plates are brought towards each other the effective number density 
increases as nef f  = nA/(A - 1) for A >, 2 reflecting the fact that within the available 
configurational states for fibres the effective number density has increased over the 
bulk. Hereafter we will refer to this normalization as a normalization for a reduced 
available volume. 
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The second interpretation of the number density in a bound suspension can be 
understood by considering the following experiment. Consider a slightly different 
system from the one described above where a fluid between two parallel plates is in 
equilibrium with an unbound reservoir of fluid, then the number density of fibres 
within the reservoir and within the available states between the parallel plates would 
be the same. 

At equilibrium, there is a difference in the chemical potential between the fibres 
in the gap and the fibres in the reservoir. Ignoring hydrodynamic and electrostatic 
interactions between the fibres and the walls, an energy balance combined with the 
definition of the chemical potential (McQuarrie 1976) shows that the difference in 
the chemical potential between bound and unbound fibres is equal to the ratio of 
the accessible volume within the gap to the total volume within the gap. Within the 
available states the chemical potential of fibres in the gap and in the reservoir is the 
same, and thus so is the fibre concentration within the available states. Considering 
the total volume of the gap, the chemical potential difference scales as 4/A for A <  2 
and A / ( A  - 1) for A2 2. 

To consider our model problem and results in this work as a confined suspension 
in equilibrium with an unbound bulk suspension, all that need be done is replace the 
normalization constant, M (A), with 1/(4n). Hereafter, whenever this replacement is 
done, we will refer to it as normalized for equilibrium with an unbound suspension. 
Often it is easier to understand our results under this normalization since a suspension 
of fibres with number density n will remain at that concentration regardless of the 
gap width whereas when normalized for reduced available volume, the true number 
density will change as the gap width is varied. 

Together the equations (3.6), (3.7), (3.12), (3.13), (3.14) and (3.20) completely 
specify the fibres’ probability density function. However, this specification leaves the 
probability density coupled with the fluid velocity field through the term g(z,Q) as 
defined in equation (3.7). In the next section, the governing equations for the fluid 
are derived which will complete the mathematical description of the extra stress of 
the previous section and the probability density function of this section. 

4. Average momentum equations for the suspension 
Derivation of the equations governing the motion begins with a momentum balance 

on a volume of the suspension at steady state. We consider a volume in which the 
fibres are experiencing a net force and torque. From superposition we can combine 
the nonlocal extra stress derived in 92 where the fibres were subjected to an external 
torque with the averaged momentum equations derived in this section to describe a 
suspension of fibres experiencing both external torques and forces. If a volume of 
suspension containing fibres is experiencing a net body force then Cauchy’s equation 
for the fluid is 

aaij 
axj 
- = Fi 

where Fi is the force density on the fibres in the suspension assuming the fluid is force 
free. Substituting the total stress defined in equation (2.1) into the above expression 
and ensemble averaging over all configurations of fibres within the suspension yields 
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As before, uj  represents the fluid velocity and 9 is the fluid pressure. The ensemble- 
averaged force density in equation (4.2) is by definition of an ensemble average (Mc- 
Quarrie 1976) 

(Fi) (x) = S, dp J 

(Fi) (x) = J dp /'" ds ( ~ i    XI^ - s p , p ) ) ,  P (x - sp ,p )  * 

dxc (Fi ( x ~ x c , p ) ) ,  P (xc ,p)  * (4.3) 

As with the extra stress, the force density is approximately constant over displacements 
of O(b) perpendicular to the fibre's central axis. Thus, the first conditionally averaged 
force density, (Fi ( x I ~ ~ , p ) ) ~ ,  can be integrated over the cross-section of a fibre yielding 

x W x c , ~ )  

(4.4) 

On integration over a cross-section of a fibre, the force density, Fi, becomes a force 
per unit length denoted as Fi. 

To relate the force per unit length to a body force felt by the fibres, consider a fixed 
fibre with a force per unit length of fi(s) at some cross-section s where the total force 
on the fibre is Bi. If the body force results from a continuous, uniformly distributed 
force density throughout the fibre, a force balance on a section of that fibre from one 
end where s = 4 to a general cross-section s, requires that 

Q -e 

Equation (4.5) states that the body force is evenly distributed over the length of a 
fibre and depends only on its centre-of-mass position and orientation. For a large 
aspect ratio body, the force per unit length of equation (4.4) is related to the total 
force shown in equation (4.5) through 

- 1 
2& 

Combining the relationship between the force densities, equation (4.6), with the 
ensemble-averaged force density relation, equation (4.4), completes the definition of 
the ensemble-averaged force per unit length 

Fi (sIxc,p) = - 9 i  ( x c , ~ ) .  (4.6) 

Substituting the force density relationship derived in equation (4.7) into the gov- 
erning momentum balance equation (4.2) one arrives at the governing nonlocal 
momentum equation 

Finally, for the problem under consideration, the body force term, Bi is related to 
a Brownian force as shown by Chandrasekhar (1943), Doi 8z Edwards (1989) and 
Larson (1988). As with the Brownian torque in 92, the Brownian force is proportional 
to a gradient of a potential which depends on a probability density function as in 
equation (2.24), viz. 

Substituting the definition of the potential from equation (2.24) into equations (4.9) 
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and (4.8), one finds that the body force integral in the momentum balance can be 
expressed as a gradient of a scalar function. Thus, the integral of the body force term 
in equation (4.8) can be written 

= 2 [-kBT S, dp 1; ds (&) P (x - sp,p) . (4.10) 
axi 1 

The nonlocal body force term in the governing momentum balance behaves as an 
osmotic pressure where the term in brackets is the scalar function representing the 
extra pressure due to body force acting on the suspended fibres. Derivation of a 
thermodynamic pressure in a suspension from a momentum balance was shown by 
Brady (1993) to be equivalent to an osmotic pressure. The total extra pressure, or 
osmotic pressure due to the fibres, is the sum of the above body force contribution 
and the trace of the extra stress derived in $2. 

Equations (4.8) and (4.10) complete the derivation of the governing momentum 
balance and couple this balance to the extra stress derived in $2 and the probability 
density function derived in $3. The methods used to solve this coupled set of equations 
and thus determine the rheology in shear and pressure-driven flow are discussed in 
the next section. 

5. Solution techniques 
Equations (2.19)-(2.21), (2.24), (2.25), (3.6)-( 3. lo), (3.12)-(3.14), (3.20), (4.8)-(4.10) 

completely specify an ensemble-averaged extra stress, average velocity field and 
probability density function for rigid slender fibres confined between two parallel 
plates. To solve this set of coupled, nonlinear integral-differential equations under 
conditions of weak flow, or strong Brownian motion, a series solution in powers of 
the small parameter, the PCclet number, is sought. Expanding the extra stress, velocity 
and probability density in terms of the PCclet number we obtain 

(5.1) 

(5.2) 
(5.3) 

Substitution of this series expansion into the governing equations and equating like 
powers of Pe  removes the nonlinearities resulting from products of velocity and 
probability by separating these terms to different orders in the PCclet number. 

While the expansion in PCclet number separates the nonlinear terms, the over- 
all system remains coupled at finite fibre concentrations because calculation of 
the extra stress requires the probability density function and velocity field, which 
will deviate significantly from those in purely Newtonian flows. However, in 
the limit of zero fibre concentration, the velocity field is that of a Newtonian 
fluid and one can directly calculate the probability density function using known 
techniques (Bird & Warner 1971; Brenner 1974; Brunn 1976; Brunn & Grisafi 1987; 
Nitsche 1991; Nitsche & Brenner 1990; Stewart & Sorensen 1972). From this prob- 
ability density function, the extra stress profiles to first order in concentration can 
be calculated. However, these calculated stress profiles are only valid in the limit of 
vanishingly small concentration, i.e. nd3 4 0. Though this limitation is restrictive, 

(oi j )  = (oij)(0) + Pe  (oij)(l) + Pe2 (oij)(2) + * * . , 
(ul)  = (u2) (0) + Pe ( ~ 2 ) " )  + Pe2 ( ~ 2 ) ( ~ )  + . * .  , 

p = ~ ( 0 )  + Pe ~ ( 1 )  + Pe2 ~ ( 2 )  + . . . .  
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these results are not without value in that they are simple to construct and provide a 
useful check on the fully self-consistent calculations discussed below. We shall return 
to these asymptotic solutions for small concentration in $6.1. 

Considering the entire set of governing equations, one can solve for the extra stress, 
velocity and probability density simultaneously providing fully self-consistent results. 
These self-consistent calculations are valid for finite fibre concentrations in that the 
fibres and their extra stress affect the mean flow which, in turn, affects the value 
of the stress contribution for each fibre. However, within these approximations, the 
fibres only interact through the mean flow. 

To solve the system of equations (2.19)-(2.21), (2.24), (2.25), (3.6)-(3.10), (3.12)- 
(3.14), (3.20), (4.8)-(4.10), we note that the velocity and extra stress depend on 
position within the gap z while the probability depends on three-variables, z,O and 
4. Solution of this fully three dimensional problem is a formidable task analytically 
or numerically. However, our choice of coordinate system used allows a reduction in 
the dimension of the system by one. As shown in figure 3, the orientation angle 4 
describes the fibre’s orientation relative to the vorticity axis which is perpendicular 
to the flow. Since the fluid boundaries are parallel to the flow and the vorticity 
axis, rotation in the $-direction cannot force a fibre through a boundary. Though 
it appears in the no-flux boundary conditions, equations (3.12) and (3.13), the angle 
4 can have any value and the no-flux conditions must still hold. This suggests that 
like the governing equation for the probability density function, equation (3.6), the 
no-flux boundary conditions are separable in the variable q5 at every order in the 
Ptclet number expansion. 

Applying separation of variables on the governing equations to remove the 4- 
dependence, and applying the constraint that the solution be periodic in 4, the 
probability density function to second order in P e  has the form 

P ( z , 0 , 4 )  = nM(A){l + P e s i n ~ ~ ( z , O ) + P e 2 [ 9 ~ ( z , O ) - c 0 s 2 ~ 9 2 ( z , 0 ) ] } .  (5.4) 

In equation (5.4), M(1) refers to the normalization constant determined by equa- 
tion (3.20) and n is the fibre number density. The terms %(z,  O ) ,  9?1(z, 0) and 92(z ,  0) 
refer to unknown functions of z and 0. This form for the probability density function 
agrees with earlier works of Bird & Warner (1971) and Stewart & Sorensen (1972) 
once the coordinate system is rotated to move the shear plane from the (y, z )  plane 
to their choice of shear in the (x, y) plane. 

Substituting the general probability density function of equation (5.4) into the nor- 
malization condition, equation (3.20) allows analytic calculation of the normalization 
term, M(1). The normalization function is 

for A < 2 
(5.5) 

Once g1 and 9 2  are determined, the numeric coefficients on the Pe2 terms can be 
calculated and are && and for A < 2 and A > 2 respectively. As was discussed 
in $3, the normalization in equation (5.5) is a normalization for a reduced available 
volume. Since the geometry considered in this work is a fluid confined between 
two infinite, parallel plates with finite separation, we will proceed with normalization 
of the problem for a reduced available volume throughout this work, except where 
noted. 

Since the &functionality in the probability density function and the normalization 
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function are known, it follows that to determine the extra stress, velocity field 
and probability density function, one must solve simultaneously a one-dimensional 
problem for the extra stress and fluid velocity and a two-dimensional problem for 
the probability density function (or rather its constituent parts X ( z ,  d), % ? ~ ( z ,  0) and 
%?z(z,8)). Moreover, we note that since O(Pe')  terms in the probability density 
function contribute to the O(PeO) Brownian torque and force terms in the extra stress 
and momentum balance, one can solve to O(PeO) in extra stress and velocity while 
only solving the probability density function problem to O(Pe') .  Once that problem is 
completed, one can then solve the O(Pe')  problem for extra stress and velocity while 
simultaneously solving the O(Pe2) problem in probability. Thus the system has been 
reduced to first solving two one-dimensional problems for (ai,)(') ( z )  and (4") ( z )  
and a two-dimensional problem for X ( z ,  0) simultaneously, followed by solving again 
two one-dimensional problems for (aij)(') ( z )  and (u2)(') ( z )  and two two-dimensional 
problems for %?1(z78) and 92(z ,d ) .  Though this solution method is still difficult, 
the dimensional order of the problem has been reduced, and the results for the 
probability density function can be compared to earlier works (Bird & Warner 1971; 
Stewart & Sorensen 1972) in the limit as the gap width A+ co. 

After the problem has been reduced to solving a series of one- and two-dimensional 
problems simultaneously, solution of the reduced system proceeds in several different 
ways. In the limit of very small gaps, A -+ 0, fully analytic solutions are found for the 
governing extra stress, velocity and probability density functions. For intermediate and 
large gap widths, the governing equations are solved numerically using fourth-order 
finite differencing. The accuracy of the numerical results is checked by comparison 
to the analytic results in the large and small gap limits. The semi-analytic and 
numeric technique of boundary collocation used previously (Nitsche & Brenner 1990; 
Nitsche 1991) was employed for intermediate gap widths as well. However, this 
technique which requires building Green's function solutions to the probability density 
equation from its eigenfunctions and distributing these Green's functions outside the 
problem domain to support the boundary conditions suffered from poor convergence 
for most intermediate gap widths, 2 < 50, considered here. Thus, this technique was 
abandoned and finite differences were used as the main numerical method to solve 
this problem. Finally, all finite difference solutions were calculated on continually finer 
grid sizes until the calculated results ceased to change in their first four significant 
figures. After applying the transformation t = cos8 to linearize the shape of the 
confining boundaries in the ( z ,  8)-space (Nitsche & Brenner 1990; Nitsche 1991) grid 
points were uniformly distributed in the ( z ,  t)-space using 3000 to 6000 grid points. 

For results calculated using the solution techniques outlined above, we discuss the 
shear flow of a suspension of rigid fibres between parallel plates in the next section. 

6.  Shear flow results 
Shear flow is attained by moving the upper plate with a velocity 5 relative to the 

lower plate as shown in figure 3. A nonlinear velocity profile develops due to the 
presence of the fibres. When no fibres are present, n f 3  = 0, linear simple shear flow 
is attained. 

Before examining the full probability density function for fibres under simple shear, 
it is necessary to first consider this function in the absence of flow. Under static 
conditions, the rods fill the gap in all allowed positions and orientations with equal 
probability. Near a wall with the geometry chosen for this problem, there is a reduced 
set of allowed orientation angles, 8, that a fibre with centre of mass at z can have. 
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FIGURE 5. The centre-of-mass probability density function, P,,(z) at various shear rates: 
P e  = 0 and P e  = 3. 

This set of angles was described earlier as el and 62 in equations (3.16) and (3.17), 
and shown graphically in figure 4. Combinations of z and 6 that lie below the line 
z = 1 cos 61 are forbidden since they necessitate the fibre passing through a wall. All 
combinations of z and 8 above the line are allowed. Under static conditions, fibres 
fill all allowed configurations with equal probability. 

Defining the probability of finding a fibre with its centre of mass at z as 

one can calculate the centre-of-mass probability as a function of distance from the 
wall. Under static conditions geometric constraints cause the distribution of the 
probability of finding a fibre with centre-of-mass position at z to decline linearly from 
its constant bulk value as one approaches a wall. This behaviour in the centre-of-mass 
distribution has been demonstrated elsewhere for rigid rod suspensions by Magda, 
Tirrell & Davis (1988). Plotted in figure 5 is the centre-of-mass distribution for zero 
net flow, P e  = 0, and during flow, P e  = 3. The centre-of-mass probability density 
function is a weak function of P e  changing as O(Pe2)  when flow is initiated. 

For any given distance from the wall, there is a finite probability of intersecting 
a fibre segment from any fibre within a dimensionless distance of two from the 
point of interest z .  Thus, one can define a segmental probability density function, or 
probability of intersecting a fibre segment as 

@4(zdf) 

Psm(z) = 1:; dzeff / do [ dcj sin 6 P(zeff ,  8,4)* (6.2) 
e3(zeff) 

In this definition, z l ( z )  and z2(z) are the minimum and maximum centre-of-mass 
positions within the allowed configuration space from which fibres can intersect 
the point of interest z .  In the bulk, z l ( z )  = z - 1 and z ~ ( z )  = z + 1 since fibres 
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FIGURE 6. The segmental probability density function, Psm(z) at various shear rates: 
P e  = 0 and P e  = 3.  

plus and minus one unit length away can intersect the point of interest. Near a 
boundary, z1 and z2 are constrained to lie within the natural domain of z E [O,A]. 
The functions &(ze f f )  and 84(zef f )  define the minimum and maximum angles in 8 that 
a fibre with centre of mass at zef f  can have and still intersect the plane of interest, 
z .  Carrying out this calculation, one can predict the segmental probability density 
function as depicted in figure 6. Like the centre-of-mass probability density function, 
the segmental probability density function is a weak function of P e  changing under 
flow at O(Pe2).  This rather surprising result occurs because depletion of fibres at one 
orientation angle is balanced by accumulation of fibres at a symmetric angle relative 
to 8 = n/2. Accumulation of fibres at an orientation of 8 = 71/4 balances depletion 
of fibres at an orientation of 8 = 3n/4. This occurs because the probability density 
function is antisymmetric in 8 about n/2 at all powers in P e  considered here. 

Once the flow is initiated, the fibres take a non-uniform distribution of orientations. 
Far from the walls, the fibres’ most probable orientation is 8 = 71/4 and 6 = 71/2 
and by symmetry 8 = 3n/4 and 4 = 3n/2. Under conditions of weak shear, 
Brownian motion tends to randomize the fibres’ orientation distribution. However, 
the weak shear introduces an extensional component to the flow with the primary 
axis of extension at 8 = n/4. Thus, the fibres’ most probable orientation is near this 
value (Bird & Warner 1971; Stewart & Sorensen 1972). As the shear rate increases, 
the most probable orientation angle increases until 8 = 71/2 for high shear rates. 
Under conditions of strong Brownian motion, higher-order corrections in P e  to 
the orientation distribution function move the most probable orientation slightly 
off the primary axis of extension (Bird & Warner 1971; Stewart & Sorensen 1972). 
By solving the governing equations for the fibres’ orientation distribution under 
conditions of strong shear and weak Brownian motion, Leal & Hinch (1971) showed 
that a fibre’s most probable orientation is 8 = n/2. For the problem we consider 
where fibres experience weak shear and strong Brownian motion, it is physically 
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FIGURE 7. The fibre probability density function, P(z,O,4) ,  for a shear flow where P e  = 1 and a 
gap width I = 10. Since the probability density function under shear flow is symmetric about the 
centre of the gap, the function is only plotted for half of the entire channel where z < 5. 

correct to expect the probability density function to reach a maximum when the 
fibres are aligned with the primary axis of the extensional part of the flow. 

Near a wall, the set of allowed fibre orientations, i.e. the available &orientation, is 
reduced from that in the bulk. At the wall the only allowed 0-orientation is 0 = n/2. 
In figure 7 the probability density function described by equation (5.4) for rigid fibres 
under shear flow is plotted. This plot has been constructed such that the three 
independent variables (2 ,  0 and 4 )  span the three orthogonal faces of a cube. At 
each point within this cube the value of the probability density corresponding to the 
value of z ,  8 and 4 at that point is marked via a shading scheme. High probability 
values are bright while low probability values are dark. In order to see the important 
structure of the probability density function, regions of very low probability have 
been made transparent in figure 7 and slices have been removed from regions of high 
probability to show their internal structure. Figure 7 shows the probability density 
function over half of the gap, z E [0,1/2], for a total gap width of il = 10 at Pe = 1 
and a fibre concentration of c = 1. Since the shear flow probability density function 
is symmetric about the centreline of the channel, a mirror image of figure 7 exists 
for z E [il/2,il]. Examination of this probability density function shows that far from 
the walls in the centre of the channel, hydrodynamic forces cause the fibre’s most 
probable orientation to lie near the primary axis of extension, 0 w n/4, 4 w n/2 and 
0 = 37c/4, 4 w 3n/2 as mentioned previously. Approaching a wall, the hydrodynamic 
alignment of the fibres is reduced and the tendency to line up with the primary axis 
of extension is weakened since the wall dominates the fibre’s environment. Near these 
boundaries, the allowed configurations in 0 decrease leaving a wedge shaped region 
of allowed configurations. As shown in figure 7, the probability density function is 
changing rapidly over the length of a fibre as it approaches a wall. Thus, fibres 
near a wall are experiencing a concentration field that changes rapidly along their 
length. Also, since Brownian forces and torques are proportional to gradients of 
the probability density function, the Brownian forces and torques felt by a fibre are 
changing rapidly within this depletion region. The rapidly changing concentration 
field and Brownian forces supports the initial assertion that to understand these wall 
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FIGURE 8. ( a )  Velocity profiles for a gap width of 1 = 10.0 and fibre concentrations of 0 < c < 1.0. 
(b)  Extra shear stress profiles for 1 = 10.0 and c = 1.0. Open circles denote the extra shear stress 
predicted by Hinch & Leal (1972) evaluated at a fibre concentration of c = 1.0 and at the local 
shear rate. 

regimes one must consider the fibres in a nonlocal environment. Not surprisingly, the 
average velocity field also changes rapidly near the flow boundaries as shown below. 

Plotted in figures 8, 9 and 10 are velocity and extra shear stress profiles as a 
function of position within the gap for gap widths of il = 10,4 and 1 respectively. 
In figure 8 it is evident that the velocity distribution is stratified into three distinct 
regions. In the core of the channel, the profile is flat with shear rate slightly below the 
bulk applied shear rate for all c > 0. Near the walls are the two other flow regions 
in which the velocity changes rapidly to match the no-slip condition at either wall. 
Comparing the velocity profile to the corresponding extra stress profile in figure 8 one 
can see the total extra stress is constant in the core of the channel. Near the walls, the 
extra stress rapidly drops to zero. Within the core of the channel, the extra stress is 
dominated by its Brownian component. However, approaching the wall, the Brownian 
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component decays sooner than either of the two hydrodynamic components. The 
smaller hydrodynamic component is the extra stress associated with the inability of a 
rigid fibre to rotate with the perpendicular component of the fluid velocity when that 
velocity varies along the fibre's length. Only near the walls where the fluid velocity is 
changing rapidly on the length of a fibre does this component of the stress become 
non-zero. Open circles in the extra stress plot correspond to unbound suspension 
properties predicted elsewhere (Giesekus 1962; Hinch & Leal 1972) and evaluated at 
the local shear rate at the channel's centre. By comparison with the bulk theoretical 
predictions, one sees that the core of the solution behaves as if it were unbound. The 
walls strongly affect the region within one full rod length 2/, but diminish quickly 
thereafter. 

To allow easy comparison of the data in figures 8, 9 and 10, the extra shear 
stresses have been normalized for equilibrium with an unbound suspension. As 
mentioned earlier, this normalization is equivalent to replacing the normalization 
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FIGURE 10. As figure 8 but for a gap width of 1 = 1.0. 

function M (A) by the factor 1/ (47~). Physically this corresponds to making the fluid 
between the parallel plates in equilibrium with an unbound suspension of fibres at 
the same concentration. Using this normalization, a concentration, CO, at one gap 
width is directly comparable to the same concentration at a different gap. Without 
this normalization, the concentration of the suspension between the parallel plates 
would fractionally change as the gap size changes as described earlier in $3. For the 
detailed calculations of the velocity profile, extra stresses and probability density, this 
normalization is immaterial. However to aid understanding, it is easiest to present 
our results assuming the confined suspension is in equilibrium with an unbound 
suspension of a given concentration. 

In figure 9 are plotted velocity and extra stress profiles at a gap width of A = 4, 
for the same; concentrations and shear rates as in figure 8 where the gap width was 
il = 10. Note that the size of the slip region has remained the same; however the 
magnitude of the slip is larger than in figure 8 relative to the upper plate velocity. The 
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velocity profile is strongly nonlinear in figure 9 because the depletion layers at either 
wall are within a full fibre length of each other and can thus interact. As before, 
the extra stress profile shown in figure 9 is a maximum at the centre of the channel 
where the Brownian component dominates. However, the solution at the centre no 
longer behaves like an unbound suspension as demonstrated by the reduction in stress 
relative to the extra shear stress for an unbound suspension of slender Brownian rods 
evaluated at the centreline shear rate, cf. figure 9. Approaching either wall, the 
Brownian extra stress decays followed by the hydrodynamic stresses and both vanish 
identically at the bounding surfaces. 

At still smaller gaps, the velocity and stress profiles are plotted in figure 10 where 
A = 1. The velocity profile is almost linear as was found for much larger gaps. The slip 
regions encountered earlier are essentially absent. This occurs because the extremely 
narrow gap confines the slender fibres to orientations nearly parallel with the walls, 
8 = n/2. In these orientations, the large aspect ratio fibres have a minimal effect on 
the stress and hence the flow. Note also that in contrast to our previous calculations, 
the hydrodynamic extra shear stress dominates over the Brownian extra shear stress 
throughout the entire channel. 

6.1. Asymptotic results for small jibre concentration and small gap 

Since the velocity profile is linear for small gap widths (as demonstrated by our 
numerical calculations) and it is linear as well in the limit of small fibre concentrations, 
simple analytic expressions can be calculated for the probability density and, therefore, 
the extra stress in these two distinguished limits. Although different asymptotes, there 
are a number of similarities in the analysis of these limits. Thus we shall develop an 
asymptotic solution as c +. 0 (finite A) first, and then return to a brief discussion of 
the related limit A +. 0 (finite c). 

For linear velocity profiles, the probability density ceases to depend on position 
within the gap, except for the excluded angles due to the bounding surfaces. In the 
limit of zero fibre concentration, P(z,8,4) will be small throughout the gap. Thus, 
ignoring changes in the probability density function near the walls will induce an 
error of O(clA - 281) when one assumes P(z, 8 , 4 )  + n@(8,+) where 8 E [8,(z), 02(z)] 
as c +. 0. It follows that the only z-dependence of the probability density function 
occurs in the definition of the allowed set of orientation angles &(z) and &(z). 
With these approximations, the orientation distribution function @ ( O ,  4 )  in the small 
concentration limit can be derived from equation (3.6) or equivalently, following the 
work of Bird & Warner (1971) and Stewart & Sorensen (1972). To first order in 
PCclet number. the fibre orientation distribution becomes 

l imp (z,e,4) or l imp ( z ,e ,$)  = n @ ( 8 , 4 )  = ~ M ( A )  (1 + P e i  s in4  sin8 c o d } .  

Using this orientation distribution function confined to the reduced set of orientation 
angles, 8,(z) and &(z) defined in equations (3.16) and (3.17), calculation of the extra 
shear stress from equations (2.19)-(2.21), (2.24) and (2.25) is straightforward. The 
extra shear stress becomes 

C-0 1-0 
(6.3) 
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where S (z) is defined as 

& (523 - 325) + %z5 for 0 < z < 1 

for 1 d z < 2 

for 2 ,< z < (A/2). 

S(z) = 6 + & (40z2 - 20z3 + zs) (6.5) { A + +  
The function S(z) is a geometric function defining the shape of the stress profile 
while the prefactor to S (z) in equation (6.4) governs the magnitude of the stress. The 
first terms in S(z) arise from the first hydrodynamic component of the extra stress 
while the second term derives from the Brownian component. Thus, the hydrodynamic 
stresses scale as z3 for z < 1 while the Brownian contribution to the shear stress scales 
as z5. It is expected therefore that for small gap widths, i.e. 1 < 2, the hydrodynamic 
contribution to the shear stress should dominate the Brownian contribution as was 
evident in figure 10. Note finally that, since the shear stress is symmetric about the 
centreline of the channel, z = 1/2, only the shear stress for the lower half of the 
channel is presented in equations (6.4) and (6.5). 

Since the total shear stress is constant on any plane parallel to the walls, one can 
use equation (6.4) to calculate the local shear rate as a function of position within 
the gap. Adding the fluid contribution to the extra stress in equation (6.4), the total 
shear stress is 

(023) = "?(z) + in2M(1)C ?(z) s (z ) ,  (6.6) 
- where the shear stress has been made dimensionless with the applied shear rate, 
U / ( A / ) ,  times the solvent viscosity, p. From equation (6.6), the shear rate as a 
function of position within the gap becomes 

1 
"?(z) = 1 + $7c2M(1) c S(z)' 

Given the shear stress and shear rate from equations 
profile in the limit of zero fibre concentration becomes 

(6.7) 

(6.4) and (6.7), the velocity 

u(z) = z + - i7c2M(1) c ?(t) S(t)  d t  - iz$n2A4(A) c $(<) S(5) d t .  (6.8) 

Figure 11 compares the asymptotically calculated velocity and stress profiles at a 
concentration of c = 0.5 to the actual profiles calculated via the full numerical solution 
of the governing equations. The asymptotic solutions recover all the qualitative 
features of the extra shear stress and the velocity profiles found in the fully self- 
consistent calculations. 

Since the only assumption made in deriving the results (6.3)-(6.8) was that the 
velocity profile was approximately linear, it follows that all these results are similarly 
valid in the limit of small gap, i.e. 1 + 0, c - O( 1). Of course, we must expand each 
equation for 1 << 1. Thus the shape function, S(z), becomes 

x 

S(z) = ;z3. (6.9) 

With an asymptotic theory for both small concentration and small gap width, 
simple predictions can be made about the suspension's effective properties. In the 
following subsection we will compare the effective rheology predicted via the fully 
self-consistent theory with this simple asymptotic theory. 



302 R. L. Schiek and E. S. G. Shaqfeh 

4 

3 

Ye 

1 

0 
0 1 2 3 4 

0.20 

0.15 

0.10 

0.05 

0 

FIGURE 11. (a) Velocity and (b)  extra shear stress profiles for a gap width of A = 4 and a fibre 
concentration of c = 0.25 as predicted by the the self-consistent, nonlocal theory and the dilute 
asymptotic theory. 

6.2. Effective rheology 

To examine the effects of the confining walls on the effective rheology of the thin 
layer, we first define 

as the effective viscosity of the suspension at a given point, z ,  within the gap and 

(6.11) 
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as the average effective viscosity of the suspension for a fixed gap width, 3,. Note that 
peff also equals the ratio of the shear stress to the shear rate at the moving plate in 
our parallel plate geometry. In the absence of confining walls, peff equals the effective 
viscosity of an unbound suspension since, in this instance, the centre of mass and 
orientational distribution of fibres would be uniform. Thus, if the suspension were 
locally homogeneous, then neither the shear rate nor shear stress would depend on z 
and it follows that 

where the terms subscripted with unb refer to shear stress and shear rate in an 
unbound suspension. Therefore, the effective viscosity averaged over the entire gap 
approaches the effective viscosity of an unbound suspension as the gap becomes 
infinitely large. 

Using the asymptotic formula for the extra stress defined in equation (6.4), and the 
asymptotic shear rate defined in equation (6.7), the average effective viscosity to first 
order in concentration can be found as 

for 0 < 3, < 2 

A6 - 120A4 + 640A3 + 20483, - 4480 !!a = 1 + pM(3,)C { for 2 < 3, < 4 
P 76801 

I 643,;A115 
for 3, 2 4. 

(6.13) 
The limiting behaviour for the effective viscosity in the small gap limit (for c - O( 1)) 
found from expanding 6.13 for 3, << 1 is 

Peff 4 A3 
lim - = 1 + - n 2 ~ ( n )  c -. 
1-0 p 3 48 

(6.14) 

In figure 12 the zero shear rate, effective viscosity as defined by (6.11) is plotted as 
a function of gap width and concentration. The dashed lines represent the asymptotic 
small concentration approximation defined above and also included are the predictions 
for an unbound suspension by Hinch & Leal (1972). The three different graphs in 
this figure represent three different ways of understanding the data and help explain 
the basic scaling behind the effective viscosity. 

Figure 12(a) represents the average effective viscosity normalized for a reduced 
available volume discussed in $3; it is the averaged effective viscosity for a suspension 
confined between two infinite, parallel plates. Figure 12(b) represents the average 
effective viscosity for a suspension normalized to be in equilibrium with an unbound 
suspension of fibres at the same number density n. Thus, the effective viscosity 
in figure 12(b) corresponds to that which is more easily measurable in an actual 
experiment where a confined fluid under flow is in equilibrium with an unbound 
suspension. 

For both normalizations of the effective viscosity, in figures 12(a) and 12(b), there is 
a strong dependence of effective viscosity on gap especially for higher concentrations. 
Very large gaps (3, > 30) are required before the total solution effective viscosity 
approaches the predicted effective viscosity for an unbound suspension predicted by 
Hinch & Leal (1972). 
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The asymptotic solution, in the limit c -+ 0 (1 - 0(1)), for the effective viscosity 
derived in equation (6.13) shows a scaling of the effective viscosity with total gap width. 
The primary assumptions made in the derivation of equation (6.13) were that the 
concentration was vanishingly small, c -+ 0 and that the rigorous no-flux constraints 
on the probability density function, equations (3.12) and (3.13), could be ignored 
provided the reduction in available fibre orientations near a wall, equations (3.16) 
and (3.17), is enforced. If the scaling of the effective viscosity in equation (6.13) is 
valid for all concentrations then dividing the effective viscosity data in figure 12(b) by 
the gap width scaling of equation (6.13) should reduce the data to a set of straight 
lines. Plotted in figure 12(c) is the average effective viscosity data from figure 12(b) 
with the gap width scaling of equation (6.13) factored out. As is evident from 
figure 12(c), this scaling does an excellent job at low concentration and medium gap 
widths in explaining the reduced effective viscosity found in bound suspensions. At 
larger concentrations, this asymptotic theory does not fully account for the reduction 
in effective viscosity. 

In the previous discussion of velocity profiles for various gap widths and concen- 
trations, reference was made to the non-monotonic behaviour of the apparent slip 
velocity as a function of gap width. Figure 13(a) shows the slip velocity (where 
slip velocity is defined as the expected velocity at the wall if the velocity is lin- 
early extrapolated from the velocity profile at the centre of the channel) scaled 
by the upper plate velocity for various gap widths and concentrations. One can 
see that the magnitude of the slip relative to the upper plate velocity is a max- 
imum for gaps near i = 4 for all concentrations. Plotted in figure 13(b) is the 
expected slip velocity as a function of gap width and concentration made dimen- 
sionless with p8 which is a characteristic velocity difference over a distance 8, the 
scale of the velocity slip. Examination of this slip velocity plot, figure 13(b), shows 
that as the gap width grows, a constant, concentration-dependent slip layer devel- 
ops and remains for all larger gaps. Additionally, the slip expected for infinitely 
large gaps, made dimensionless with as a function of concentration is plotted 
in figure 14. For the concentrations investigated in this work, the slip velocity 
under shear flow grows approximately linearly with fibre concentration at large 
gaps. 

6.3. Normal stresses 
Apart from the extra particle shear stresses, normal stress differences occur in Brow- 
nian fibre suspensions and can be predicted by our nonlocal theory. In figure 15, the 
first and second normal stress differences are plotted for a concentration of c = 1.0 
and gap widths of 1 = 10,4 and 1 as a function of position within the gap, z. The 
first normal stress difference is defined in the usual fashion as N1 = (1722) - (1733) 

and the second normal stress difference as N2 = (1733) - ( 0 ~ 1 ) .  Notice that both 
normal stresses go through a region of overshoot near the walls where the nor- 
mal stress difference is greater than it is in the core. By studying normal stress 

FIGURE 12. Effective viscosity of a confined suspension under shear as a function of gap width 
and fibre concentration. In all three figures the open circles connected with lines represent the 
self-consistent, nonlocal theory, while the large-dashed lines represent the asymptotic theory and 
the small-dashed lines represent the predictions of Hinch & Leal (1972) for the effective viscosity 
of an unbound fibre suspension at the concentration indicated. In (a) the data are normalized for 
a reduced available volume, while in (b)  and ( c )  the data are normalized to be in equilibrium with 
an unbound suspension at the same concentration as described in the text. 
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FIGURE 13. Slip velocity for a confined fibre suspension as a function of gap width and concentration. 
In (a) the slip velocity is made dimensionless with the upper plate velocity, uplate while in (b)  the slip 
velocity is made dimensionless with the characteristic velocity jd. Open circles connected with lines 
represent the self-consistent, nonlocal theory, while the large-dashed lines represent the asymptotic 
theory. 

profiles at several concentrations, this non-monotonic behaviour near the wall was 
determined to be a concentration effect. That is, as the fibre concentration goes 
to zero, the overshoots near the wall vanish. In the limit of c + 0 the first nor- 
mal stress difference decays monotonically from its core value to zero at the wall 
while the second normal stress difference goes from its negative value in the chan- 
nel's centre to a positive value near the wall, and finally to zero at the bounding 
surface. 

For all gap widths and concentrations, the second normal stress difference is 
positive for short distances from the wall. In very narrow gaps, the second normal 



Nonlocal stress in bound suspensions 307 

0.8 

.% 0.6 
2 2 
23- 
W 

0.4 

.- 8 
M 

0.2 

0 

0 0.2 0.4 0.6 0.8 1 .o 
Concentration, c 

FIGURE 14. Slip velocity for a confined fibre suspension in the limit of infinite gap width as a 
function of fibre concentration for suspensions under shear and pressure-driven flow. 

stress difference is always positive as shown in figure 15(c). Near a wall in both 
large and small gaps, the second normal stress difference becomes positive for the 
same reason. A rigid fibre rotating in a Jeffery's orbit will rotate in both the 8- and 
+-directions. When a fibre is near a boundary under the shear flow shown in figure 3, 
rotation in the &direction will be hindered while rotation in the +-direction will not. 
While the hydrodynamic forces from the shear flow tend to align the fibres with 
the flow where 4 w n/2,  the larger magnitude Brownian forces tend to randomize a 
fibre's orientation. Rotation in the +-direction near a wall in the (XI, x2) plane from 
Brownian torques results in the positive second normal stress difference. 

In figure 16 the normal stress differences at the centre of the channel are plotted 
as a function of the gap width using concentration as a parameter. Dashed lines 
represent predictions by Hinch & Leal (1972) for normal stress differences in unbound 
fibre suspensions. For small gaps, both the first and second normal stress differences 
are positive. Once the gap width becomes larger than the full rod length, the second 
normal stress becomes negative and begins approaching its expected bulk value. The 
first normal stress difference remains positive for all gap widths and approaches the 
expected value for unbound suspensions quickly for low concentrations but much 
more slowly at high concentrations. 

7. Pressure-driven flow 
Holding the upper plate fixed and applying a pressure gradient in the xz-direction 

in figure 3 results in pressure-driven flow within the channel. For this flow, the same 
governing equations are solved as in the shear flow case, but with a zero fluid velocity 
boundary condition at each wall. 

For large gaps, the pressure-driven flow near the wall is equivalent to a simple 
shear flow. As such, the probability density function for pressure-driven flow in a 
large gap (A = 10) is similar to that for a shear flow near the wall. 

In figure 17 regions of high probability in fibre configuration space are plotted 
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for fibres in planar pressure-driven flow at a concentration of c = 1, a gap width of 
I = 10 and P e  = 1 as was done earlier for shear flow, cf. figure 7. For this figure, the 
probability density function is only plotted for half the channel, being antisymmetric 
about the channel centreline. Near each wall, the probability density function is 
changing rapidly on the length scale of a fibre. At the centre of the channel, where 
the local shear rate is zero, there is little preference for any orientation as Brownian 
motion fully randomizes the fibres’ orientation. 

For moderate and small gaps, the probability density function changes on the 
length scale of a fibre across the entire gap. Plotted in figure 18 is the probability 
density function for a gap of two full fibre lengths, I = 4, at the same concentration 
and wall shear rate as before, c = 1 and Pe  = 1 respectively. For these small gaps, 
the local curvature in the velocity field occurs on lengths smaller than a fibre length. 
Thus the probability density function is affected by the curvature of the velocity field, 
not just the local effective shear rate. Again it is evident that the probability density 
function is changing rapidly, and the problem is nonlocal. 

Shown in figures 19, 20 and 21 are velocity and extra shear stress profiles for gap 
widths of I = 10,4 and 1 respectively. As was the case with shear flow, the large 
gap pressure-driven velocity profiles have three distinct regions. In the centre of 
the channel is the core flow where the field is strongly effected by the presence of 
the rods. The core velocity profile is flattened or thickened due to the extra stress 
associated with the rods. Approaching either wall one sees the depletion region where 
the extra shear stress goes to zero and the local shear rate increases rapidly as the 
fluid thins. The extra shear stress profiles show that the extra stress components 
all vary linearly in the centre of the channel with local shear rate. However as 
a boundary is approached, all three components rapidly diminish. As before the 
Brownian component decays at a full fibre length followed by the two hydrodynamic 
components. 

At the intermediate gap width of A = 4, shown in figure 20, the flattening of the 
velocity profile is stronger than at larger gaps widths, but the regions near the wall 
are unchanged. Examination of the extra shear stress as a function of position within 
the gap shows the same trend as before where the Brownian component decays before 
the hydrodynamic components. 

Finally, for very narrow gaps, the velocity field remains almost unchanged for 
various fibre concentrations as shown in figure 21 where I = 1. As was the case with 
shear flow, the extra shear stress due to the fibres is much weaker for narrow gaps, 
and the hydrodynamic extra shear stresses dominate over their Brownian counterparts 
across the entire gap. 

7.1. Asymptotic solution for  small jibre Concentration and small gap 

As was done for shear flow in the previous section, asymptotic solutions for the 
probability density, extra shear stress and velocity can be determined in the limit of 
zero fibre concentration and separately in the limit of small gap width. To first order 

FIGURE 15. First and second normal stress differences for a confined suspension of slender fibres as 
a function of position within the gap for a fibre concentration of c = 1.0: (a)  represents a total gap 
width of 1 = 10, ( b )  a gap width of 1 = 4 and (c) a total gap width of 1 = 2.0 Open circles denote 
the normal stress differences predicted by Hinch & Leal (1972) evaluated at a fibre concentration 
of c = 1.0 and at the local shear rate. 
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FIGURE 16. (a) First and ( b )  second normal stress differences at the centre of the channel as a 
function of total gap width and fibre concentration. Open circles connected by lines represent the 
predictions of the self-consistent nonlocal theory, while dashed lines represent the normal stress 
differences predicted by Hinch & Leal (1972) evaluated at the indicated fibre concentration and at 
the shear rate applied across the entire gap. 

in Peclet number the fibre orientation distribution becomes 

lim P (z, 8, 4)  or lim P (z, O , @ )  = n@ ( O , $ )  
c+o 1-10 

=nnM(A) { 1+Pe-  ;( 1-- ';) sin4 sinOcosO}. (7.1) 

Using this orientation distribution function confined to the reduced set of orientation 
angles, & ( z )  and O,(z), calculation of the extra shear stress from equations (2.19)- 
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FIGURE 17. The fibre probability density function, P ( z ,  0,4), for pressure-driven flow where P e  = 1 
and the gap width is 1 = 10. Since the probability density function under pressure-driven flow is 
antisymmetric about the centre of the gap, the function is only plotted for half of the entire channel 
where z < 5. 

(2.21), (2.24) and (2.25) results in 

(fJi3) = $n2M (A) pLjcS (z) (7.2) 

with S ( 2 )  is defined as 

121 - 292 1; (523 - 3z5) + for 0 < z < 1 

for 1 d z  < 2  
-240 + 1603, - 8OAz + 40z2 + 4Az3 - 3z4 

A - 22 

for 2 < z < (A/2).  

(7.3) 

Since the shear stress is odd about the centreline of the channel, z = A/2, the shear 
stress for the upper half of the channel is the same as the shear stress show in equa- 
tions (7.2) and (7.3) but with the opposite sign. As before, the hydrodynamic stresses 
scale as z3 for z < 1 while the Brownian contribution to the shear stress scales as z5. 

The dimensionless local shear rate as a function of position within the gap can be 
calculated as before yielding 

(1 - 2z/A) 
Q(z) = + -n ( 2 M  A) c S(z) (7.4) 

where we recall that the shear rate has been made dimensionless with the shear rate 
at the wall. 

From the shear stress and shear rate expressions, equations (7.2) and (7.4), the 
velocity profile in the limit of zero fibre concentration is 

Z 
U(Z) = - (A - Z)  - $n2M(A) c $(<) S ( < )  d<. 1 (7.5) 

A comparison between the asymptotically calculated velocity and stress profiles and 
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the same profiles derived from the self-consistent calculations for a concentration of 
c = 0.1 and a gap width of 1 = 6 is shown in figure 22. At low concentrations, the 
asymptotic theory reproduces the qualitative shape of the extra stress and velocity 
profile. At higher concentrations, c > 0.25, the asymptotic theory differs significantly 
from the self-consistent theory. 

In the small gap limit where A + 0 the above asymptotic theory applies and can be 
simplified. Taking the limit 1 + 0, the only result that changes is the shape function 
S(z) which becomes 

s (z) = + z 3 .  (7.6) 
and is identical to the small gap shape function derived earlier for shear flow. 

As was done for the analysis of shear flow in the previous section the asymptotic 
theory for both small concentration and small gap width can be used to derive 
predictions of a suspension’s effective properties. In the next subsection we will 
compare the effective rheology predicted via the fully self-consistent theory with this 
simple asymptotic theory. 

7.2. Effective rheology 
For pressure-driven flow, the effective viscosity is defined as the ratio of the volumetric 
flow rate of the Newtonian solvent to the volumetric flow rate of the suspension at 
the same pressure drop. Since the velocity profile for the Newtonian case is known, 
the average effective viscosity can be written concisely as 

Employing the velocity profile predicted from the asymptotic theory in the preceding 
section, an analytic expression for the dependence of the effective viscosity on total 
gap width can be derived. Using equation (7.5) to calculate the approximation 
to the volumetric flow rate for a confined fibre suspension and substituting into 
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equation (7.7) one can derive 

A3 (7168 - 195A2) 
1720320 I (6A8 - 27A7 - 651A6 + 5964A5 - 8190A4 

for 0 < 3, < 2 

+ 25648A3 - 185136A2 + 4222083, - 299728) 
for 2 < 3, < 4 ' 107520A3 

7168A3 - 38640A2 + 726843, - 46045 
6720A3 

for 3, 2 4. 
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The limiting behaviour for the effective viscosity in a small gap is, 

whose divisor is an order of magnitude larger, 240 compared to 48, than the divisor 
of the effective viscosity taken in the same limit for shear flow in the previous section, 
cf. equation (6.14). 

In the large gap limit where A >> 1, the effective viscosity under shear flow scales as 

lim = 1 + $T2hri(A) c (V). (7.10) 
P shear flow 
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FIGURE 21. As figure 19 but for a gap width of = 1.0. 

Under pressure-driven flow, the limiting behaviour of the effective viscosity is, 

(7.11) 

Comparison of equations (7.10) and (7.1 1) indicates that for pressure-driven flow, 
signijicantly larger gaps are required to achieve the same increase in efective viscosity, 
because of the coefficient -% = -% in shear versus -% = -3 in Poiseuille flow. 

12. 
Plotted in figure 23 is the effective viscosity as defined by equation (7.7) for various 

gap widths and concentrations of fibres. As before, the data are plotted in three 
ways. First, figure 23(a) presents the effective viscosity data normalized for a reduced 
available volume while figure 23(b) presents the effective viscosity for a confined 
suspension in equilibrium with an unbound suspension of number density n. Finally, 
figure 23(c) presents the effective viscosity once the dependence on gap width has been 
factored out according to the effective viscosity predictions of the asymptotic theory, 

lim W (  = 1 + y M ( n )  c ( T ) .  641-345 
P pressure-driven flow 
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FIGURE 22. (a)  Pressure-driven flow velocity and ( b )  extra shear stress profiles for a gap width of 
,? = 6 and a fibre concentration of c = 0.10 as predicted by the the self-consistent, nonlocal theory 
and the dilute asymptotic theory. 

equation (7.8). Comparing these plots with the same plots for shear flow in figure 12 
shows that the pressure-driven effective viscosities take considerably larger gaps to 
reach the anticipated unbound effective viscosities. In figure 23(c), the nearly constant 
values of the effective viscosity data derived from the self-consistent calculations 
when rescaled with the asymptotic theory suggest that the main assumption of the 
asymptotic theory is correct, namely that the primary effect of the boundary is to 
reduce the allowed set of orientation angles for fibres near the walls. 

The effective viscosity defined by equation (7.7) determines the viscosity that a 
Newtonian solution would have in order to produce the same volumetric flow rate as 
the fibre suspension at the same axial pressure drop. Given a Newtonian solution with 
the effective viscosity predicted by equation (7.7), and the same maximum velocity as 
the fibre suspension at the centre of the channel, the slip velocity is defined as the 
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velocity that the Newtonian solution would have at the walls of the channel. Defined 
as such, the slip velocity is a measure of the degree to which a fibre suspension 
confined in a channel alters the natural, parabolic velocity profile of a Newtonian 
fluid. The larger the slip velocity, the more the presence of the fibres distorts the 
parabolic profile. Plotted in figure 24 are slip velocities made dimensionless with the 
centreline velocity in figure 24(a) and with the characteristic velocity Bd in figure 24(b). 
As was the case with shear flow, the slip relative to the maximum velocity reaches 
a maximum value around iz = 5 and then declines. On the other hand, the slip 
velocity relative to the velocity Qd rapidly climbs to a maximum value as the gap 
width increases. Comparison of the slip velocity under shear flow made dimensionless 
with the same characteristic velocity, Qd, to the slip velocity under pressure-driven 
flow shows that the magnitude of the slip is much smaller for pressure-driven flow; 
cf. figures 13(b) and 24(b). Additionally, the slip expected for infinitely large gaps 
made dimensionless with y’.  as a function of concentration is plotted in figure 14. 
Direct comparison can be made with the slip velocities calculated for shear flow in 
this figure since they have been non-dimensionalized by the same quantity. As shown 
by figure 14, the slip velocity under pressure-driven flow is a nonlinear function 
of fibre concentration. At low concentrations both shear and pressure-driven flow 
slip velocities are comparable. However, at larger concentrations, the slip velocity 
for pressure-driven flow is much smaller than the predicted slip for shear flow. 

8. Comparison with experiments 
Unfortunately the experimental difficulties associated with measuring velocity pro- 

files for suspensions confined to regions whose size is of the order of a micron has 
prevented measurement of velocity profiles to which we can compare our theory. 
However, direct comparisons can be made with our theoretical predictions for the ef- 
fective viscosity and experimentally measured effective viscosities of fibre suspensions 
in flow through porous media. 

Sorbie & Huang (1991) measured the pressure drop associated with passing a dilute 
suspension of Xanthan gum through a packed bed of spheres. Since they only used a 
bed packed with one fixed size of spheres, from which they derived a hydrodynamic 
pore size, their effective viscosity measurements can only be compared to one gap 
width in our work. For a pore size of 14.0 pm and a fibre half-length of 0.5 pm the 
dimensionless gap width for their experiments is iz = 28.0. Lacking accurate size data 
for Xanthan gum, the concentration parameters for our theory were determined as 
follows. Based on the work of Hinch & Leal (1972), the zero shear viscosity for an 
unbound suspension of slender rigid fibres should be 

Using the unbound suspension effective viscosities reported by Sorbie & Huang 
(199 l), the concentration was calculated for each solution that passed through the 
packed bed. Calculated this way, the concentration parameter ranged from c = 0.25 
to c = 2.60 in the experiments of Sorbie & Huang (1991). 

Plotted in figure 25 is the effective viscosity made dimensionless with the solute vis- 
cosity predicted from the fully self-consistent nonlocal theory presented in this paper 
along with the experimentally measured effective viscosities of Sorbie & Huang (1991). 
While our theory is strictly valid only for small concentrations where c << 1, our the- 
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ory compares very well with the experiments up to c w 2.0. For fibre concentrations 
greater than 2.0 our predictions fall below their experimental measurements. This can 
be attributed to multi-particle effects which are important at higher concentrations 
but ignored in our theory. 

Additional experiments were performed by Chauveteau (1982) where he passed 
dilute and concentrated Xanthan solutions through fine capillaries while measuring 
effective viscosities. While Chauveteau performed experiments with many different 
Xanthan solutions at different concentrations, the only data available in print are for 
a concentrated suspension of Xanthan where c = 2.69 determined in the same way 
as mentioned above. However, Chauveteau employed several different capillary sizes 
in his experiments thus spanning dimensionless gap widths from A = 30 to A = 2. 
Plotted in figure 26 are the effective viscosities measured by Chauveteau (1982) and 
the effective viscosities predicted by our fully self-consistent, nonlocal theory. There is 
a constant underestimation of the effective viscosity by our theory at these high fibre 
concentrations, but that is to be expected based on the comparison with the results 
of Sorbie & Huang (1991). However, the theory does an excellent job in predicting 
the decay of the effective viscosity as the gap with is reduced. 

9. Conclusions 
Within this work we have developed a nonlocal theory for the stress in bound 

suspensions of rigid fibres. Calculation of the nonlocal stress requires the fibres’ prob- 
ability density function and the velocity field. Through a Fokker-Plank description 
of the probability and a momentum balance, a complete coupled set of integral- 
differential equations was derived to describe the model system of a suspension of 
slender fibres confined between two infinite, parallel plates. Under both shear and 
pressure-driven flow, the nonlocal extra stress was dominated, at low Pklet number, 
by contributions from Brownian torques. Near the fluid boundaries, the Brownian 
component of the extra stress decayed to zero at a distance of one full particle 
length. The weaker hydrodynamic component of the extra stress decayed to zero at 
the wall, but over a distance comparable to a fibre half-length. Also, for both shear 
and pressure-driven flows, the hydrodynamic component of the extra stress was the 
dominant contribution to the extra stress for very small gap widths. 

In addition to shear stresses, normal stress differences were calculated. For all 
gap widths the first normal stress difference remained positive over the entire gap 
while increasing to a maximum before approaching zero at the fluid boundaries. 
The increase in the first normal stress difference before it decreased to zero at the 
boundary is a concentration effect disappearing as the concentration diminishes. The 
second normal stress difference was smaller in magnitude than the first normal stress 
difference for large gap widths. However near a boundary, and across the entire gap for 
small gap widths, the second normal stress difference becomes positive regardless of 

FIGURE 23. Effective viscosity of a confined suspension under pressure-driven flow as a function of 
gap width and fibre Concentration. In all three figures the open circles connected with lines represent 
the self-consistent, nonlocal theory, while the large-dashed lines represent the asymptotic theory and 
the small-dashed lines represent the predictions of Hinch & Leal (1972) for the effective viscosity 
of an unbound fibre suspension at the indicated concentration. In (a) the data are normalized for 
a reduced available volume, while in ( b )  and (c )  the data are normalized to be in equilibrium with 
an unbound suspension at the same concentration as described in the text. 
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FIGURE 24. Slip velocity for a confined fibre suspension under pressure-driven flow as a function of 
gap width and concentration. In (a) the slip velocity is made dimensionless with the velocity at the 
centre of the channel, ucentre, while in (b)  the slip velocity is made dimensionless with the characteristic 
velocity $. Open circles connected with lines represent predictions by the self-consistent, nonlocal 
theory. 

the fibre concentration. The positive second normal stress difference can be attributed 
to the restricted rotational movements of fibres near the flow boundaries. We speculate 
that perhaps rapid changes in the first and second normal stress differences near the 
fluid boundaries may cause bulk flow instabilities found in polymer jets exiting orifices 
in low Reynolds number flows (Piau, El Kissi & Tremblay 1990). 

To better understand the predictions of the self-consistent theory, simple asymptotic 
theories were developed in the limit of small fibre concentration and in the limit of 
small gap width for both shear and pressure-driven flows. A primary assumption of 
these theories was that the probability density function for fibres confined between two 
infinite and parallel plates was the same as the probability density function for fibres 
in an unbound fluid suspension except that fibre configurations which penetrated 
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the fluid boundaries, were not allowed. Thus the asymptotic theories neglected the 
zero particle flux conditions at the fluid boundaries replacing the no-flux condition 
with truncation of the probability density function for unallowed fibre configurations. 
Qualitatively, the asymptotic theories worked well in predicting the general shape of 
the extra stress and velocity profiles at low fibre concentrations. However at higher 
concentrations, the asymptotic theories performed poorly. Rederiving the asymptotic 
theories to make them self-consistent in extra stress and velocity while making the 
same assumptions regarding the probability density function may provide a simple, 
analytic theory that does well at moderate fibre concentrations. 

The effective rheology was investigated and predicted by the self-consistent, non- 
local theory, and the asymptotic theories. When the confined suspension’s properties 
were quantified in terms of an effective viscosity, both the shear and pressure-driven 
flow effective viscosities decreased with gap width. The scaling of the effective viscosi- 
ties derived from the asymptotic theories did an excellent job at low concentrations in 
mimicking the self-consistent, nonlocal theory. When compared to experimental mea- 
surements, the effective viscosity of the self-consistent, nonlocal theory quantitatively 
predicted experimentally measured values at moderate and low fibre concentrations 
at a small gap width as reported by Sorbie & Huang (1991). At high fibre concentra- 
tions, the self-consistent, nonlocal theory under-predicted the effective viscosity, giving 
qualitative but not quantitative agreement with the experimental measurements. 

A final effective property predicted by the self-consistent, nonlocal theory was the 
slip velocity of the suspension near the confining boundaries. Under both shear and 
pressure-driven flows, the slip velocity made dimensionless with the characteristic 
velocity j4 grew with increasing gap width and reached a plateau as 1 + 00. As a 
function of fibre concentration, the slip velocity at infinite gap width was a linear 
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RGURE 26. Comparison of the effective viscosities measured by Chauveteau (1982) for gap widths 
2.0 < 1 < 29.0 and a fibre concentration of c = 2.69 to predictions by the self-consistent, nonlocal 
theory at the same concentration. Dark triangles denote the measurements of Chauveteau while the 
solid line represents the predictions of the self-consistent, nonlocal theory. 

function of concentration for shear flow. For pressure-driven flow, the slip velocity is 
comparable to the slip under shear flow at very low concentrations and infinite gap 
widths. However, as the fibre concentration increases, growth of the slip velocity in 
pressure-driven flow is slower, resulting in a nonlinear dependence of the slip velocity 
on fibre concentration. 
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